1. ai
  2. /computer vision
  3. /fundamentals

Understanding Computer Vision - Core Concepts and Techniques

Computer Vision (CV) is a field of artificial intelligence that enables computers to understand and process visual information from the world. This guide covers the fundamental concepts, techniques, and applications of computer vision.

Basic Concepts

Image Representation

  1. Digital Images

    • Pixels and color spaces
    • Image resolution
    • Color channels
    • Bit depth
  2. Image Properties

    • Intensity
    • Contrast
    • Brightness
    • Noise

Image Processing Basics

import cv2
import numpy as np

# Load and display an image
image = cv2.imread('image.jpg')
cv2.imshow('Original Image', image)

# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Basic operations
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 100, 200)

Core Operations

Image Preprocessing

  1. Color Space Conversion
# RGB to different color spaces
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
  1. Filtering

    • Gaussian blur
    • Median filter
    • Bilateral filter
    • Custom kernels
  2. Normalization

# Normalize image to 0-1 range
normalized = image.astype(float) / 255.0

# Standardization
mean = np.mean(image)
std = np.std(image)
standardized = (image - mean) / std

Feature Detection

  1. Edge Detection
# Sobel edge detection
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5)
magnitude = np.sqrt(sobelx**2 + sobely**2)
  1. Corner Detection
# Harris corner detection
corners = cv2.cornerHarris(gray, 2, 3, 0.04)
corners = cv2.dilate(corners, None)
  1. Feature Descriptors
    • SIFT
    • SURF
    • ORB
    • BRIEF

Advanced Techniques

Image Segmentation

  1. Thresholding
# Simple thresholding
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# Adaptive thresholding
adaptive = cv2.adaptiveThreshold(
    gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
    cv2.THRESH_BINARY, 11, 2
)
  1. Contour Detection
contours, hierarchy = cv2.findContours(
    thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)

# Draw contours
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)

Object Detection

  1. Traditional Methods

    • Haar Cascades
    • HOG + SVM
    • Template matching
  2. Deep Learning Approaches

    • R-CNN family
    • YOLO
    • SSD
    • RetinaNet

Image Classification

  1. Traditional Techniques

    • Feature extraction
    • Bag of visual words
    • SVM classification
  2. Deep Learning Models

import torch
import torchvision.models as models

# Load pre-trained ResNet
model = models.resnet50(pretrained=True)
model.eval()

# Prepare image for inference
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

Practical Applications

Face Recognition

  1. Face Detection
# Using haar cascades
face_cascade = cv2.CascadeClassifier(
    cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
  1. Face Recognition
    • Eigenfaces
    • Local Binary Patterns
    • Deep face embeddings

Object Tracking

  1. Basic Tracking
# Lucas-Kanade optical flow
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(
    prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0
)
  1. Advanced Tracking
    • Kalman filter
    • Particle filter
    • Deep learning trackers

Deep Learning in CV

Convolutional Neural Networks

  1. Basic Architecture
import torch.nn as nn

class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64 * 30 * 30, 10)
        
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = x.view(-1, 64 * 30 * 30)
        x = self.fc1(x)
        return x
  1. Common Architectures
    • VGG
    • ResNet
    • Inception
    • EfficientNet

Advanced CV Tasks

  1. Semantic Segmentation

    • U-Net
    • FCN
    • DeepLab
  2. Instance Segmentation

    • Mask R-CNN
    • YOLACT
    • PointRend

Best Practices

Image Processing Pipeline

  1. Preprocessing

    • Resize
    • Normalize
    • Augment
    • Filter
  2. Model Selection

    • Task requirements
    • Computational resources
    • Accuracy needs
    • Latency constraints

Performance Optimization

  1. Hardware Acceleration

    • GPU processing
    • CPU optimization
    • Edge devices
  2. Code Optimization

# Efficient image processing
@numba.jit(nopython=True)
def process_image(image):
    # Optimized processing code
    pass

Tools and Libraries

Essential Libraries

  1. OpenCV

    • Image processing
    • Video analysis
    • Camera calibration
  2. Deep Learning

    • PyTorch
    • TensorFlow
    • Keras

Development Tools

  1. Image Annotation

    • LabelImg
    • VGG Image Annotator
    • CVAT
  2. Visualization

    • Matplotlib
    • OpenCV
    • TensorBoard

Emerging Technologies

  1. 3D Vision

    • Depth estimation
    • 3D reconstruction
    • Point cloud processing
  2. Multi-Modal Learning

    • Vision + Language
    • Vision + Audio
    • Cross-modal understanding

Getting Started

Prerequisites

  1. Mathematical Foundation

    • Linear algebra
    • Probability
    • Statistics
    • Calculus
  2. Programming Skills

    • Python
    • OpenCV
    • Deep learning frameworks

Learning Path

  1. Basic Concepts

    • Image processing
    • Feature detection
    • Classical algorithms
  2. Advanced Topics

    • Deep learning
    • Object detection
    • Semantic segmentation

Resources

Learning Materials

  1. Books

    • "Digital Image Processing" by Gonzalez & Woods
    • "Computer Vision: Algorithms and Applications" by Szeliski
    • "Deep Learning for Computer Vision" by Goodfellow et al.
  2. Online Resources

    • Course materials
    • Tutorial series
    • Research papers
    • Blog posts

Remember that computer vision is a rapidly evolving field. Stay updated with the latest research and developments while building a strong foundation in the fundamentals.