Understanding Computer Vision - Core Concepts and Techniques
Computer Vision (CV) is a field of artificial intelligence that enables computers to understand and process visual information from the world. This guide covers the fundamental concepts, techniques, and applications of computer vision.
Basic Concepts
Image Representation
Digital Images
- Pixels and color spaces
- Image resolution
- Color channels
- Bit depth
Image Properties
- Intensity
- Contrast
- Brightness
- Noise
Image Processing Basics
import cv2
import numpy as np
# Load and display an image
image = cv2.imread('image.jpg')
cv2.imshow('Original Image', image)
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Basic operations
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blurred, 100, 200)
Core Operations
Image Preprocessing
- Color Space Conversion
# RGB to different color spaces
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
Filtering
- Gaussian blur
- Median filter
- Bilateral filter
- Custom kernels
Normalization
# Normalize image to 0-1 range
normalized = image.astype(float) / 255.0
# Standardization
mean = np.mean(image)
std = np.std(image)
standardized = (image - mean) / std
Feature Detection
- Edge Detection
# Sobel edge detection
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5)
magnitude = np.sqrt(sobelx**2 + sobely**2)
- Corner Detection
# Harris corner detection
corners = cv2.cornerHarris(gray, 2, 3, 0.04)
corners = cv2.dilate(corners, None)
- Feature Descriptors
- SIFT
- SURF
- ORB
- BRIEF
Advanced Techniques
Image Segmentation
- Thresholding
# Simple thresholding
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# Adaptive thresholding
adaptive = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2
)
- Contour Detection
contours, hierarchy = cv2.findContours(
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# Draw contours
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)
Object Detection
Traditional Methods
- Haar Cascades
- HOG + SVM
- Template matching
Deep Learning Approaches
- R-CNN family
- YOLO
- SSD
- RetinaNet
Image Classification
Traditional Techniques
- Feature extraction
- Bag of visual words
- SVM classification
Deep Learning Models
import torch
import torchvision.models as models
# Load pre-trained ResNet
model = models.resnet50(pretrained=True)
model.eval()
# Prepare image for inference
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
Practical Applications
Face Recognition
- Face Detection
# Using haar cascades
face_cascade = cv2.CascadeClassifier(
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
- Face Recognition
- Eigenfaces
- Local Binary Patterns
- Deep face embeddings
Object Tracking
- Basic Tracking
# Lucas-Kanade optical flow
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(
prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0
)
- Advanced Tracking
- Kalman filter
- Particle filter
- Deep learning trackers
Deep Learning in CV
Convolutional Neural Networks
- Basic Architecture
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 30 * 30, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = x.view(-1, 64 * 30 * 30)
x = self.fc1(x)
return x
- Common Architectures
- VGG
- ResNet
- Inception
- EfficientNet
Advanced CV Tasks
Semantic Segmentation
- U-Net
- FCN
- DeepLab
Instance Segmentation
- Mask R-CNN
- YOLACT
- PointRend
Best Practices
Image Processing Pipeline
Preprocessing
- Resize
- Normalize
- Augment
- Filter
Model Selection
- Task requirements
- Computational resources
- Accuracy needs
- Latency constraints
Performance Optimization
Hardware Acceleration
- GPU processing
- CPU optimization
- Edge devices
Code Optimization
# Efficient image processing
@numba.jit(nopython=True)
def process_image(image):
# Optimized processing code
pass
Tools and Libraries
Essential Libraries
OpenCV
- Image processing
- Video analysis
- Camera calibration
Deep Learning
- PyTorch
- TensorFlow
- Keras
Development Tools
Image Annotation
- LabelImg
- VGG Image Annotator
- CVAT
Visualization
- Matplotlib
- OpenCV
- TensorBoard
Future Trends
Emerging Technologies
3D Vision
- Depth estimation
- 3D reconstruction
- Point cloud processing
Multi-Modal Learning
- Vision + Language
- Vision + Audio
- Cross-modal understanding
Getting Started
Prerequisites
Mathematical Foundation
- Linear algebra
- Probability
- Statistics
- Calculus
Programming Skills
- Python
- OpenCV
- Deep learning frameworks
Learning Path
Basic Concepts
- Image processing
- Feature detection
- Classical algorithms
Advanced Topics
- Deep learning
- Object detection
- Semantic segmentation
Resources
Learning Materials
Books
- "Digital Image Processing" by Gonzalez & Woods
- "Computer Vision: Algorithms and Applications" by Szeliski
- "Deep Learning for Computer Vision" by Goodfellow et al.
Online Resources
- Course materials
- Tutorial series
- Research papers
- Blog posts
Remember that computer vision is a rapidly evolving field. Stay updated with the latest research and developments while building a strong foundation in the fundamentals.